Jump to content

10 Statements on Condenser Microphones vs. Dynamic Microphones


VASI

Recommended Posts

10 Statements on Condenser Microphones vs. Dynamic Microphones

By audio specialist Eddy B. Brixen

www.dpamicrophones.com

The topic of discussion on the difference between dynamic microphones and condenser microphones is never ending. That’s fine, we don’t want it to end, rather, we want to add to the discussion and further enlighten readers a little…First of all, we must clarify a few things: The difference between dynamic microphones and condenser microphones is all about two different transducer principles. In other words, it has nothing to do with the directional characteristics of the microphones. You cannot ask: ‘What kind of directional characteristic does a dynamic microphone have?’ or ‘Which one is more directional, the dynamic or the condenser?’ Please erase such questions from your mind!

Instead, this is actually a matter of transducer principles. Both dynamic and condenser microphones do have a membrane that vibrates in accordance with the air movement around it, also known as the sound. The microphone must then transform this membrane movement from acoustical energy into electrical energy. This is where the transducer comes into the picture and each type of microphone has different transducer properties.

Statement #1: Dynamic microphones are more robust than condensers.

Comment: Many microphones have a delicate design intended for use in studios. This goes for both dynamic microphones and condenser microphones. Occasionally, some of these delicate microphones will hit the road with musicians. A microphone design that was fine for the studio may seem too fragile for touring. This may, for instance, apply to microphones equipped with tubes and other delicate internal components. This is not the case with high-quality solid state condenser microphones, which can manage the rough handling as well as any robust dynamic microphone. In fact, the lightweight membrane of the condenser microphone often survives heavy beats and drops better than the dynamic moving coil microphone. This is due to the mass of the dynamic microphone’s membrane system, which is attached to a coil. (The dynamic microphone also hits the floor harder because of its heavier weight.)

Statement #2: Dynamic microphones do not need a power supply.

Comment: The vast majority of dynamic microphones can manage without power but there are some exceptions. Basically, all condenser microphones need some kind of power supply. This is primarily to supply the impedance converter and for non-electret condensers to charge the electrodes (membrane and back electrode). Not to be outshined, active dynamic microphones need a power supply as well!

Statement #3: Condenser microphones are louder than dynamic microphones.

Comment: No, one microphone is not louder than the other, this is just a question of sensitivity. In general, condenser microphones exhibit a higher sensitivity than dynamic microphones. Either way, the sensitivity should always be chosen relative to the requirements of the job. In other words, if the microphone has to handle very high sound pressure levels, it would be advantageous to select a unit with a low sensitivity – whether it is a condenser or a dynamic microphone.

Statement #4: It is easier to mike up the band using dynamic microphones.

Comment: This statement is definitely more related to tradition and laziness than it is related to fact. No matter what you choose, you have to consider the specs and the application. In some cases it is argued that the frequency range is too wide or the opening angle is too wide.

Well, sometimes it is easier to reduce bandwidth on a condenser than it is to equalize a dynamic microphone. In general, the directional characteristics of the condenser microphones are at least as good as can be achieved by any dynamic microphone. But, as always, it’s important to pick the right microphone for the job no matter what transducer it may have.

Statement #5: The condensers feed more easily than the dynamics.

Comment: As with many of the previous statements, this is simply a question of choosing the right microphone. One basic error is selecting a condenser microphone that is developed for recording at a distance. When amplified, this may result in low frequency feed. Instead, use low-cut/high-pass or pick a microphone that is designed for stage use.

Statement #6: Dynamic microphones can handle higher sound pressure levels than condenser microphones.

Comment: This is not true. Condensers can, in general, handle extremely high sound pressure levels. The question instead is whether the mike preamp can handle all the juice coming out of the microphone.

An extremely loud singer can produce a sound pressure peak level in the range of 150 dB, measured at the lips. If you have two microphones with a sensitivity of 1 mV and 10 mV respectively (what comes out of the microphone when exposed to a sound pressure level of 94 dB re 20 μPa), you have outputs of 0.63 and 6.3 volt peak! Signals of this magnitude should instead be handled by the line input or the signal should be attenuated in one way or another.

Statement #7: Dynamic microphones change sound in dependence of the load.

Comment: This is actually true regarding passive dynamic microphones terminated by a very low impedance (remember the rule that the microphone should be terminated with a load that is at least five to 10 times higher than the output impedance of the microphone). This is due to the physics of the moving coil. A heavy load (= low ohms) acts more or less as a short circuit and reduces the low frequency output of the microphone. Eventually, high frequencies may also be reduced. This is normally only a problem with very poor mixer designs. However, making passive splits – one microphone to two or more inputs – may result in the same problem.

Statement #8: It is cheaper to use dynamic microphones than it is to use condenser microphones.

Comment: Well, if the goal for the use of the microphone is to destroy it, then go ahead, purchase the cheapest one possible. If your goal is simply to reduce the costs of replacing equipment, which are eventually exposed to rigorous or rough use, you may find it better to use a $100 microphone rather than a $1000 version. This is certainly better for economical reasons, but in the end you will probably lose sound quality.

Statement #9: People only buy condensers as a result of the Veblen effect.

Comment: Veblen effect: when people buy expensive stuff when they could have cheaper versions. In audio, the Veblen effect exists for users who are trying to achieve prestige by spending more money than they should. However, when audio engineers consider their budgets and requirements, most will buy the product that fulfills their needs in the most cost-effective manner possible.

Statement # 10: I don’t need condensers because my PA is perfect!

Comment: If the rest of the PA/SR system is first class, why shouldn’t the microphones be first class as well?

Link to comment
Share on other sites

But, of course, ribbon microphones are also dynamic microphones. Both ribbon mics and moving coil mics induce a signal via a conductor moving within a magnetic field due to the air pressure changes on the diaphram (sound waves). In the case of a ribbon mic, the diaphram and the conductor are one and the same, whereas, with a moving coil mic, the coil is attached to the diaphram.

Many people mistakenly only think of moving coil microphones when one uses the term dynamic microphone.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...